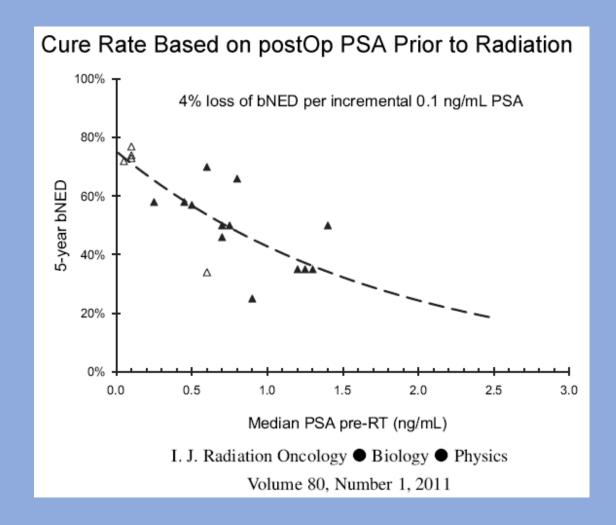
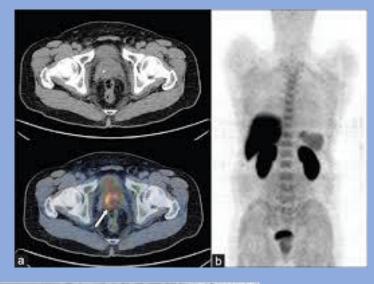
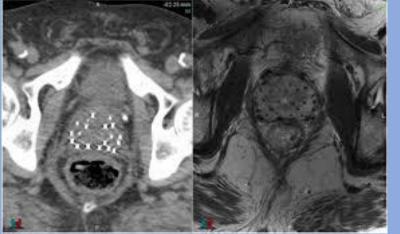
Salvage post brachytherapy: What to image, how to do it and when

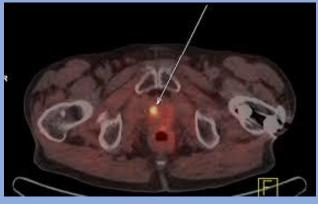

Meeran Naji
Consultant radiologist and nuclear medicine
Maidstone and Tunbridge Wells NHS Trust

Introduction

Detection of prostate cancer recurrence and treatment planning

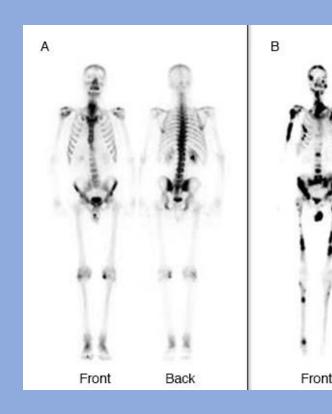

- Early detection of site of recurrence
- Differentiation between local and metastatic disease
- Treatment planning




Imaging tool box

- CT
- Bone scintigraphy
- MRI
- PETCT

Traditional imaging techniques -


CT and bone scintigraphy

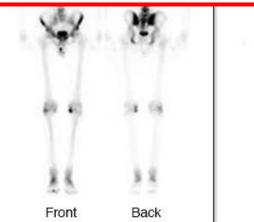
- CT lymph node metastases
- Bone scintigraphy skeletal metastases

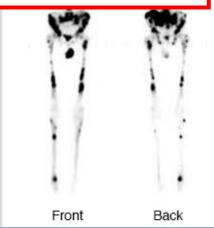
Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy.

Christopher J Kane, Christopher L Amling, Peter A.S Johnstone, Nali Pak, Raymond S Lance, J.Brantley
Thrasher, John P Foley, Robert H Riffenburgh, Judd W Moul
Kane CJ, et al. Urology. 2003;61(3):607-11

- In a series of 132 men with biochemical failure
- Positive bone scan 9.4%
- Positive CT scan 14%

Back


Traditional imaging techniques - CT and bone scintigraphy


Low diagnostic yield in PSA <10 ng/ml

Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy.

Christopher J Kane, Christopher L Amling, Peter A.S Johnstone, Nali Pak, Raymond S Lance, J.Brantley
Thrasher, John P Foley, Robert H Riffenburgh, Judd W Moul
Kane CJ, et al. Urology. 2003;61(3):607-11

- In a series of 132 men with biochemical failure
- Positive bone scan 9.4%
- Positive CT scan 14%

Biochemical recurrence

Local

Regional

Distant

- Evaluation of the risk of micro-metastases
- Clinical/laboratory and histopathological criteria
- Tumour characteristics
- PSA kinetics

Table 2 Factors pointing towards metastatic development in the event of biochemical failure.								
Factors favouring metastatic development								
Factors related to the initial tumour (before first treatment)	Gleason score ≥ 8 T3-T4 stage PSA ≥ 20 ng/mL							
Time interval between initial treatment and biochemical failure	Free interval between treatment and biochemical failure less than 2 to 3 years							
Factors related to the PSA concentration at the time of biochemical failure	Concentration ≥ 10 ng/mL Velocity ≥ 2 ng/mL per year Doubling time less than 8 to 12 months							

Biochemical recurrence

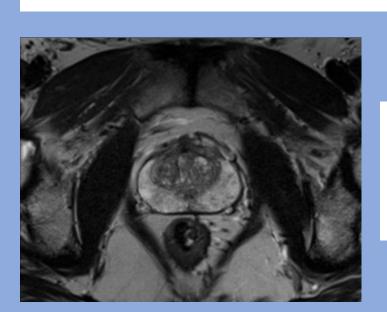
Local

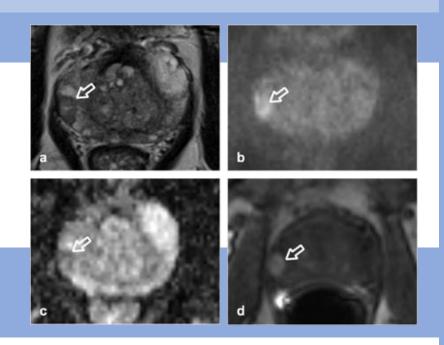
Regional

Distant

Biochemical recurrence

Local mp-MRI


Regional


Distant

Advanced imaging techniques — multiparametric MRI (mp-MRI)

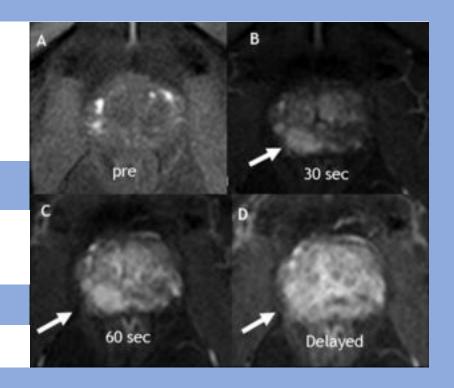
mp-MRI

- 1. Morphological (T2)
- 2. Diffusion imaging (DWI)
- 3. Dynamic contrast-enhanced MRI (DCE)
- 4. MR spectroscopy (MRSI)

MRI strengths

MRI – inherently superior contrast and special resolution Functional MRI techniques – detection of small recurrences (<1cm)

Advanced imaging techniques — multiparametric MRI (mp-MRI)


DCE – critical sequence to detect local recurrence

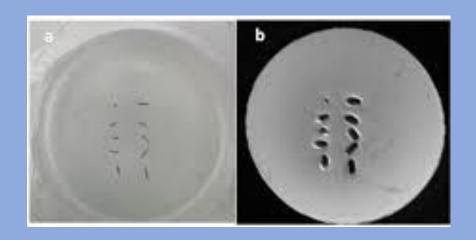
Characteristics - rapid enhancement - early washout

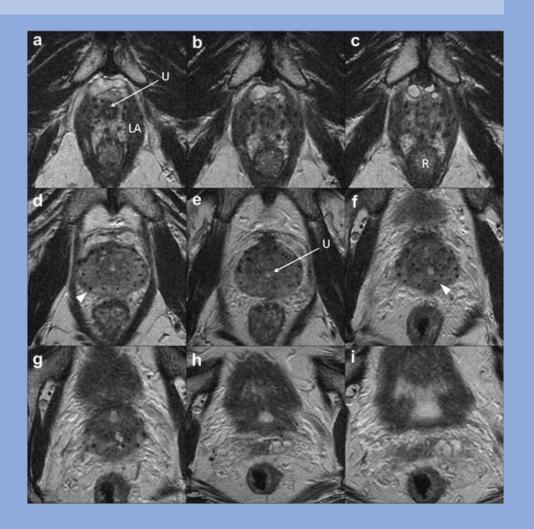
DWI - low signal on ADC maps

- hyperintensity on high b-value DWI

T2 – hypointense nodule

Current recommendation – useful in guiding biopsy procedures to potential sites of recurrence


Advanced imaging techniques — multiparametric MRI (mp-MRI)


MRI limitations

mp MRI - lack of whole-body coverage

Brachytherapy – diffuse hypointense T2 + loss of normal anatomy

Brachytherapy seeds/implants – susceptibility artefacts + images distortion

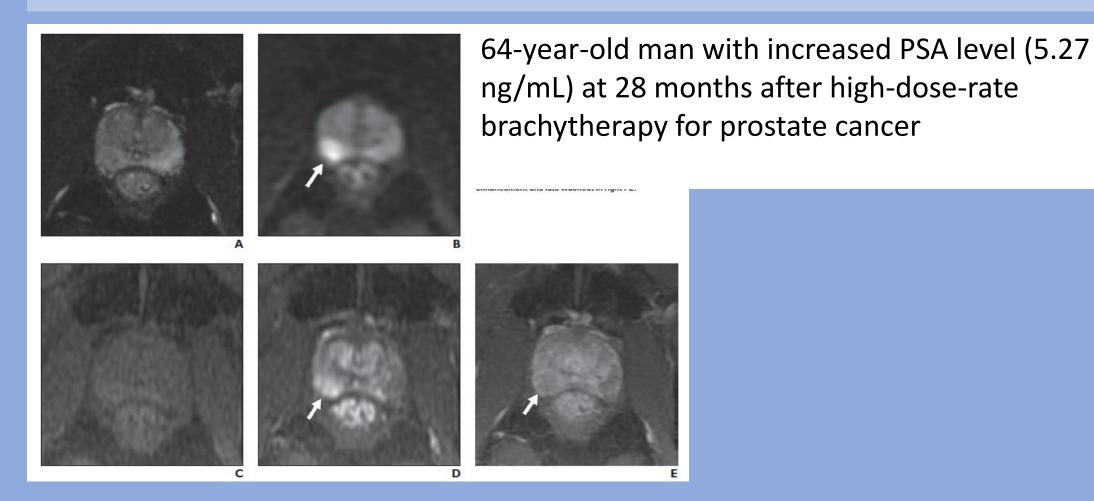
mp-MRI

Detecting local recurrence post brachytherapy

- 16 patients with biochemical failure
- Sensitivity:
- T2 27%
- DCE 50%
- DWI 68%
- Mp-MRI sensitivity (77%), specificity (92%)

Genitourinary Imaging . Original Research

Locally Recurrent Prostate
Cancer After High-Dose-Rate
Brachytherapy: The Value of
Diffusion-Weighted Imaging,
Dynamic Contrast-Enhanced MRI,
and T2-Weighted Imaging
in Localizing Tumors


Tsutomu Tamada¹ Teruki Sone¹ Yoshimasa Jo² Junichi Hiratsuka³ Atsushi Higaki¹ Hiroki Higashi¹ Katsuyoshi Ito¹ OBJECTIVE. The purpose of this article is to retrospectively evaluate the utility of prostate MRI for detecting locally recurrent prostate cancer after high-dose-rate (HDR) brachytherapy.

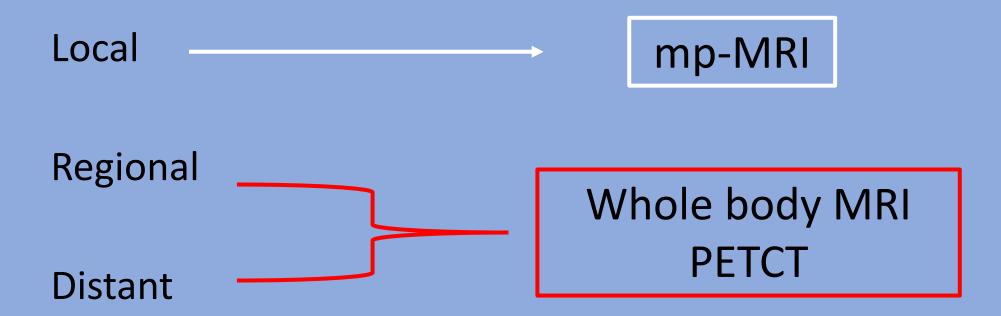
MATERIALS AND METHODS. Sixteen men with biochemical failure after HDR brachytherapy for prostate cancer underwent prostate MRI, including T2-weighted imaging, dynamic contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI), using a 1.5-T MRI unit before 12-core-specimen biopsy. Two radiologists in consensus assessed the presence of tumor on each sequence within eight regions of the prostate (six from the peripheral zone [PZ] and two from the transition zone [TZ]) on the basis of biopsy.

RESULTS. Biopsy revealed locally recurrent prostate cancer in 22 (17 in PZ and five in TZ) of 128 regions (17.2%). The sensitivity, specificity, and accuracy of each MRI method in the detection of recurrent tumor were 27%, 99%, and 87%, respectively, for T2-weighted imaging; 50%, 98%, and 90%, respectively, for DCE-MRI; and 68%, 95%, and 91%, respectively, for DWI. The sensitivity of DWI in detecting recurrent tumor was significantly higher than that of T2-weighted imaging (p = 0.004). Multiparametric MRI achieved the highest sensitivity (77%) but with slightly decreased specificity (92%).

CONCLUSION. These results indicate that a multiparametric MRI protocol that includes DWI provides a sensitive method to detect local recurrence after HDR brachytherapy.

mp-MRI Detecting local recurrence post brachytherapy

Biochemical recurrence


Local —

mp-MRI

Regional

Distant

Biochemical recurrence

Whole body MRI

Skeletal Radiol. 2014 Nov;43(11):1503-13. doi: 10.1007/s00256-014-1903-9. Epub 2014 May 20.

Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis.

Shen G¹, <u>Deng H, Hu S, Jia Z</u>.

Sensitivities
Choline – 91%
Choline – 99%
MRI – 97%
BS – 79%
BS – 82%

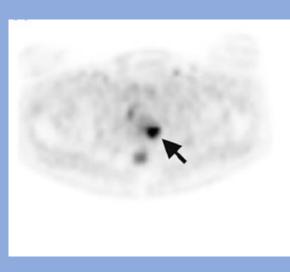
Whole body MRI

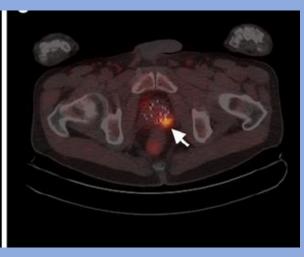
76 yo. LDR brachytherapy 2012. Rising PSA (8.9 ng/ml). Performance status 1. Right hip replacement 2007. Query suitable for salvage therapy.

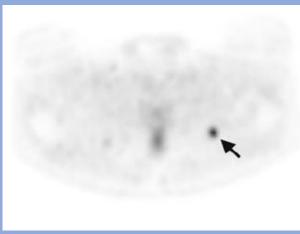
Functional imaging techniques with PETCT

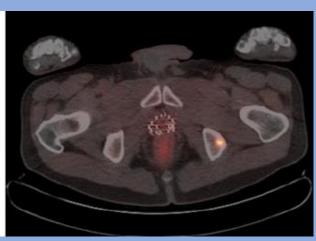
- F18-FDG
- F18-Choline
- C11-Choline
- Ga68-PSMA
- F18-PSMA
- Cu64-PSMA
- C11-Acetate
- F18-Fuoride
- F18-fluciclovine
- Ga68-Bombesin
- F18-Bombesin

Functional imaging techniques with F18-FDG PETCT


- FDG is widely used to study tumour metabolism
- Poor sensitivity
- The FDG uptake seems to correlate with degree of differentiation
- It may be most useful in detecting aggressive disease


- Choline synthesis of phospholipids in cell membranes
- Products C11-Choline and F18-Choline
- F18-Choline more widely available
- Limitations false positives in several benign conditions
- Advantage whole body examination
 - provide metabolic and anatomical information


Local Recurrence PSA - 2.1



Distant metastasis PSA – 4.5

- The detection rate and sensitivity of F18-Choline is connected with the PSA value
- The higher the PSA level, the higher is the positive detection rate
- The detection rate also correlates with the PSA kinetics

Giovacchini et al (2012). Clin Nucl Med 37: 325-331

- The detection rate and sensitivity of F18-Choline is connected with the PSA serum level
- The higher the PSA level, the higher is the positive detection rate
- Correlation between the detection rate and PSA kinetics

Giovacchini et al (2012). Clin Nucl Med 37: 325-331

PSA cut-off value?

Meta-analysis article

19 studies 1555 patients Mix cases of C11 and F18 Choline

Sensitivity of 85.6% Specificity of 92.6% Clinical Nuclear Medicine. 38(5):305–314, MAY 2013

DOI: 10.1097/RLU.0b013e3182867f3c, PMID: 23486334

Issn Print: 0363-9762

Publication Date: 2013/05/01

Choline PET or PET/CT and Biochemical Relapse of Prostate Cancer: A Systematic Review and Meta-Analysis

Laura Evangelista; Fabio Zattoni; Andrea Guttilla; Giorgio Saladini; Filiberto Zattoni; Patrick M. Colletti; Domenico Rubello

Treatment	Number of patients
Radical prostatectomy	28
Radiation therapy	13
Brachytherapy	9

Ann Nucl Med (2012) 26:501–507 DOI 10.1007/s12149-012-0601-8

ORIGINAL ARTICLE

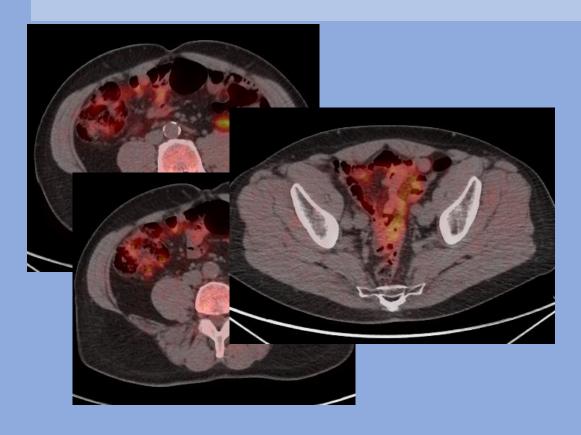
Detection of recurrent prostate cancer with 18F-fluorocholine PET/CT in relation to PSA level at the time of imaging

Sandi A. Kwee · Marc N. Coel · John Lim

Received: 10 February 2012/Accepted: 4 April 2012/Published online: 2 May 2012 © The Japanese Society of Nuclear Medicine 2012

Kwee et at

Evaluated F18 choline for the detection of recurrent prostate cancer in relation to PSA level 50 patients with rising PSA levels were reviewed

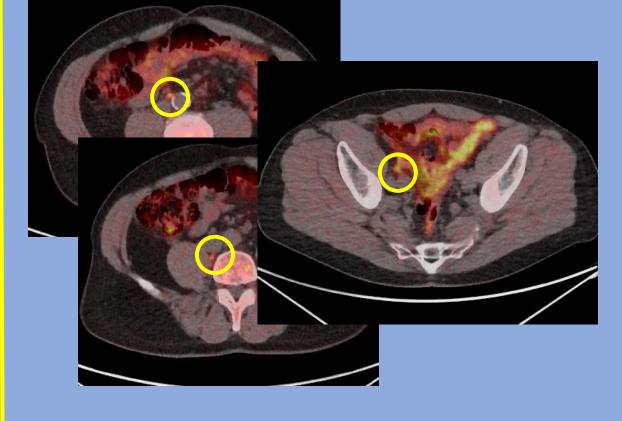

The detection rates were determined at various PSA threshold

Positive scans (%)	PSA level			
94%	> 4			
85%	2-4			
29%	0.5-2			
8%	<0.5			

Kwee et at

Evaluated F18 choline for the detection of recurrent prostate cancer in relation to PSA level 50 patients with rising PSA levels were reviewed

The detection rates were determined at various PSA threshold



Case 1
Prostate cancer
Radical radiotherapy
Rising PSA

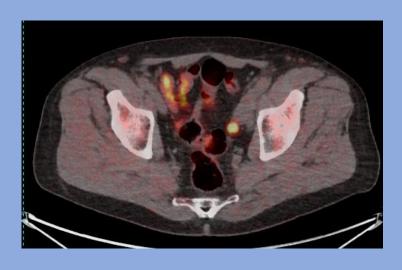

PSA - 1

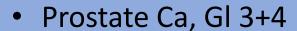
10 months

PSA - 4

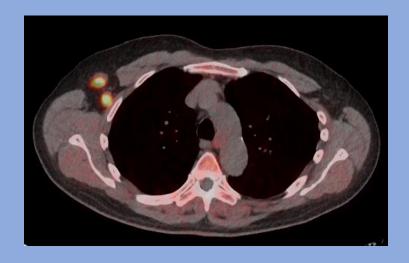
Clin Nucl Med. 2014 Feb;39(2):122-30. doi: 10.1097/RLU.000000000000303.

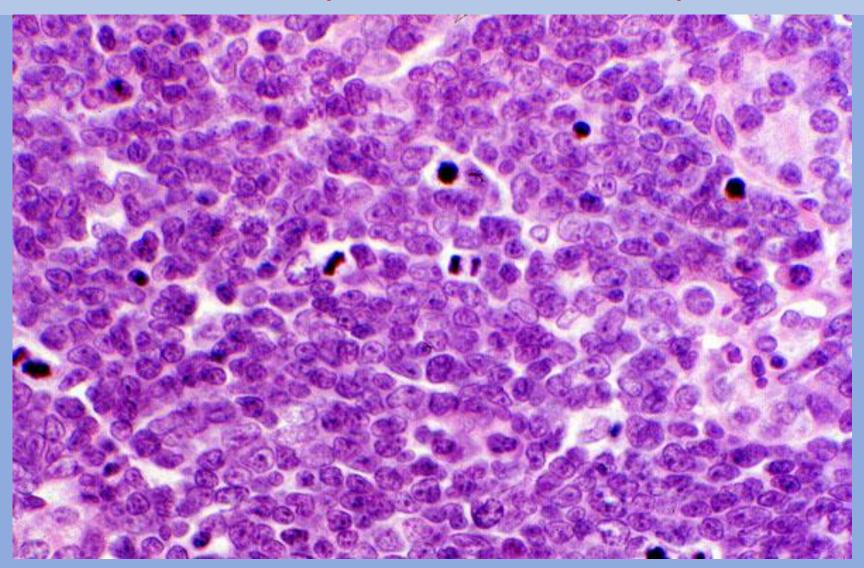


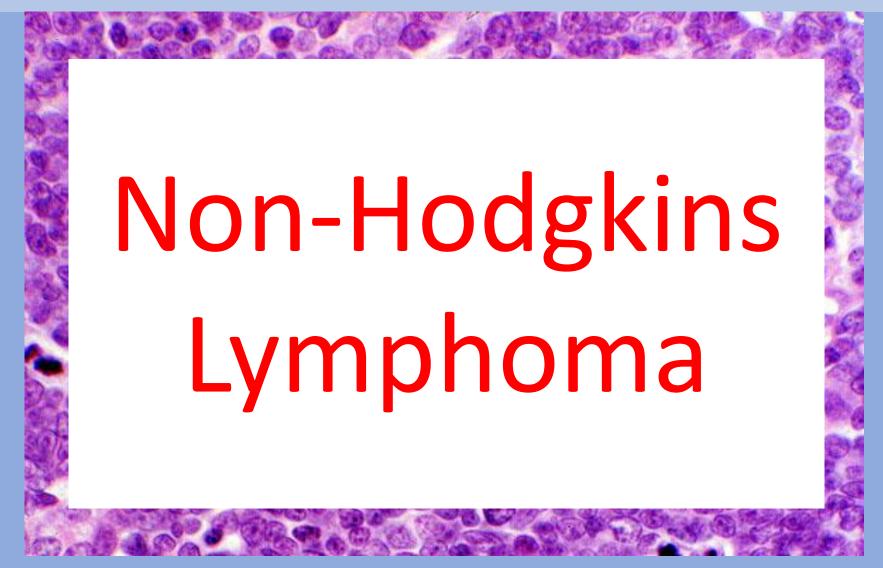

(18)F-choline PET/CT pitfalls in image interpretation: an update on 300 examined patients with prostate cancer.

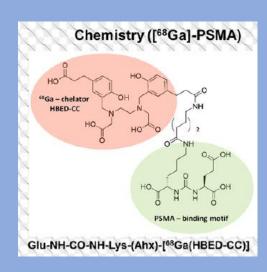

<u>Calabria F¹, Chiaravalloti A, Schillaci O</u>.

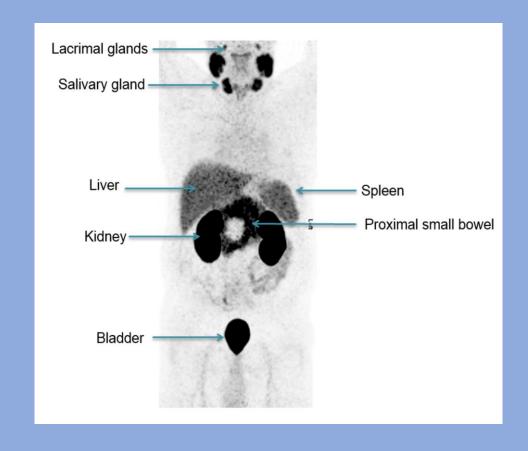
Author information


- Inflammatory processes
- 2. Sarcoidosis
- 3. Thymoma
- 4. Adrenal adenoma
- 5. Meningioma
- 6. Malignancies colonic cancer, myeloma and lymphoma






- T3a N0 M0
- Radical RT in 2008
- Rising PSA, latest PSA 1.8



- PSMA prostate specific membrane antigen
- Membrane bound glycoprotein
- Overexpressed in prostate cancer
- Coupled with Gallium 68 -Ga68 PSMA
- PSMA expressed in small intestine, renal tubules, salivary glands

Table 1. Characteristics of the studies investigating the utility of 68Ga-PSMA PET/CT in recurrent prostate cancer

Author	Study type (year)	Study group number	Inclusion criteria	Median GS (range)	Median PSA ng/ml, (range)	68Ga-PSMA detection rate	Factors correlated with PET positivity	Factors not correlated with PET positivity
Asfhar-Oromieh [40]	retrospective (2015)	319	BCR (n=292), primary staging (n=27)	7 (5-10)	4.59 (0.01-41395)	82.8%	PSA level ADT	GS PSAdt
Ceci [4]	retrospective (2015)	70	BCR	7 (5-9)	1.7 (0.2-32.2)	74.2%	PSA level PSAdt	PSAvel ADT age GS time from PT TNM
Demirkol [41]	retrospective (2015)	14	BCR or disease progression	n/a	2.5 (0.2-191.5)	100%	PSA level	n/a
Eiber [6]	retrospective (2015)	248	BCR	7 (6-10)	2.0 (0.2-59.4)	89.5%	PSA level PSAvel GS	PSAdt ADT

Table 1. Characteristics of the studies investigating the utility of 68Ga-PSMA PET/CT in recurrent prostate cancer

Author	Study type (year)	Study group number	Inclusion criteria	Median GS (range)	Median PSA ng/ml, (range)	68Ga-PSMA detection rate	Factors correlated with PET positivity	Factors not correlated with PET positivity
Asfhar-Oromieh [40]	retrospective (2015)	319	BCR (n=292), primary staging (n=27)	7 (5-10)	4.59 (0.01-41395)	82.8%	PSA level ADT	GS PSAdt
Ceci [4]	retrospective (2015)	70	BCR	7 (5-9)	1.7 (0.2-32.2)	74.2%	PSA level PSAdt	PSAvel ADT age GS time from PT TNM
Demirkol [41]	retrospective (2015)	14	BCR or disease progression	n/a	2.5 (0.2-191.5)	100%	PSA level	n/a
Eiber [6]	retrospective (2015)	248	BCR	7 (6-10)	2.0 (0.2-59.4)	89.5%	PSA level PSAvel GS	PSAdt ADT

Table 1. Characteristics of the studies investigating the utility of 68Ga-PSMA PET/CT in recurrent prostate cancer

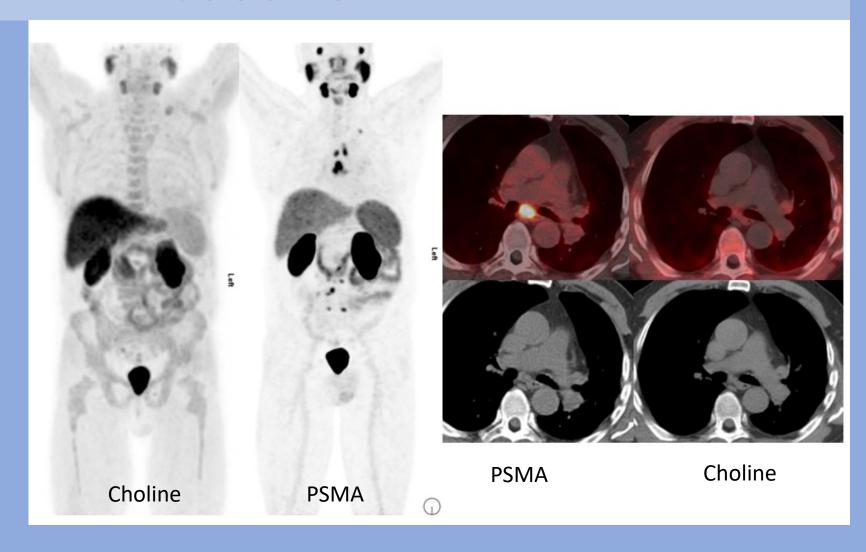

Author	Study type (year)	Study group number	Inclusion criteria	Median GS (range)	Median PSA ng/ml, (range)	68Ga-PSMA detection rate	Factors correlated with PET positivity	Factors not correlated with PET positivity
Asfhar-Oromieh [40]	retrospective (2015)	319	BCR (n=292), primary staging (n=27)	7 (5-10)	4.59 (0.01-41395)	82.8%	PSA level ADT	GS PSAdt
Ceci [4]	retrospective (2015)	70	BCR	7 (5-9)	1.7 (0.2-32.2)	74.2%	PSA level PSAdt	PSAvel ADT age GS time from PT TNM
Demirkol [41]	retrospective (2015)	14	BCR or disease progression	n/a	2.5 (0.2-191.5)	100%	PSA level	n/a
Eiber [6]	retrospective (2015)	248	BCR	7 (6-10)	2.0 (0.2-59.4)	89.5%	PSA level PSAvel GS	PSAdt ADT

Table 1. Characteristics of the studies investigating the utility of 68Ga-PSMA PET/CT in recurrent prostate cancer

Author	Study type (year)	Study group number	Inclusion criteria	Median GS (range)	Median PSA ng/ml, (range)	68Ga-PSMA detection rate	Factors correlated with PET positivity	Factors not correlated with PET positivity
Asfhar-Oromieh [40]	retrospective (2015)	319	BCR (n=292), primary staging (n=27)	7 (5-10)	4.59 (0.01-41395)	82.8%	PSA level ADT	GS PSAdt
Ceci [4]	retrospective (2015)	70	BCR	7 (5-9)	1.7 (0.2-32.2)	74.2%	PSA level PSAdt	PSAvel ADT age GS time from PT TNM
Demirkol [41]	retrospective (2015)	14	BCR or disease progression	n/a	2.5 (0.2-191.5)	100%	PSA level	n/a
Eiber [6]	retrospective (2015)	248	BCR	7 (6-10)	2.0 (0.2-59.4)	89.5%	PSA level PSAvel GS	PSAdt ADT

Author	Compared radiotracers	Study type (year)	Study group number	Inclusion criteria	PSA level, mean (±SD)	Time window between PET/ CT scans	Detection rate
Morigi [11]	68Ga-PSMA vs. 18F-choline	prospective (2015)	38	BCR	1.72 (±2.54)	30 days	PSA level <0.5: 50% vs. 12.5% PSA level 0.5-2.0: 71% vs. 36% PSA level >2.0: 88% vs. 63% overall: 66% vs. 32%
Afshar- Oromieh [43]	68Ga-PSMA vs. 18F-choline	retrospective (2014)	37	BCR	11.1 (±24.1)	30 days	PSA level ≤2.82: 68.8% vs. 43.5% PSA level >2.82: 100% vs. 90.5% overall: 86.5% vs. 70.3%

Ga68 PSMA vs. F18 Choline

Key points

- In the context of BCR, the choice of imaging modality depends on several factors (absolute PSA value, PSA kinetics and clinical suspicion)
- mp MRI is considered the modality of choice in the evaluation of the prostate/local recurrence
- Whole-body MRI and PET/CT offer better accuracy in identifying sites of nodal recurrence and distant metastases
- Choline PET/CT performs well in patients with PSA ≥2 ng/mL or fast doubling time (< 6months)
- PSMA is superior to choline and it might overcome some of its limitations

Thank